

## Termodinâmica II Lista de Problemas 1.3

Departamento de Física de Ji-Paraná Universidade Federal de Rondônia Prof. Marco Polo



# Questão 01

Dois sistemas termodinâmicos têm as seguintes equações de estado:

$$\frac{1}{T_1} = \frac{3R}{2} \frac{N_1}{U_1}$$

е

$$\frac{1}{T_2} = \frac{5R}{2} \frac{N_2}{U_2},$$

onde  $R \approx 8.314$  J/mol K é a constante dos gases. O número de mols do primeiro sistema é  $N_1 = 2$  e do segundo é  $N_2 = 3$ . Os dois sistemas são separados por uma parede diatérmica, e a energia total do sistema composto é  $2, 5 \times 10^3$  J. Qual é a energia interna de cada um dos sistemas no equilíbrio?

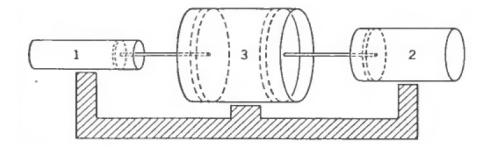
# Questão 02

Considere novamente os dois sistemas do problema anterior, que possuem as mesmas equações de estado e são separados por uma parede diatérmica. Os números de mols são  $N_1 = 2$  e  $N_2 = 3$ . As temperaturas iniciais são  $T_1 = 250$  K e  $T_2 = 350$  K. Qual é a temperatura dos sistemas depois que o equilíbrio foi atingido?

# Questão 03

Dois sistemas termodinâmicos têm as seguintes equações de estado:

$$\frac{1}{T_1} = \frac{3R}{2} \frac{N_1}{U_1}, \quad \frac{P_1}{T_1} = R \frac{N_1}{V_1}$$


е

$$\frac{1}{T_2} = \frac{5R}{2} \frac{N_2}{U_2}, \quad \frac{P_2}{T_2} = R \frac{N_2}{V_2}$$

O número de mols do primeiro sistema é  $N_1=0,5$  e do segundo é  $N_2=0,75$ . Os dois sistemas estão contidos em um cilindro fechado e estão separados por um pistão fixo, adiabático e impermeável. As temperaturas iniciais são  $T_1=200~{\rm K}$  e  $T_2=300~{\rm K}$ , e o volume total é 20 litros. Quando o parafuso de fixação do pistão é removido, bem como o seu isolamento adiabático, ele se torna móvel, diatérmico e impermeável. Qual é a energia, o volume, a pressão e a temperatura de cada subsistema quando o equilíbrio é atingido? Considere  $R\approx 8,3~{\rm J/mol}~{\rm K}$  e assuma que a pressão externa vale zero.

#### Questão 04

Três cilindros contêm quatro pistões, como mostrado na figura. As áreas dos pistões estão na razão  $A_1:A_2:A_3=1:2:3$ . Pares de pistões estão acoplados tal que seus deslocamentos são iguais. As paredes dos cilindros são diatérmicas e estão conectadas por uma barra condutora de calor (ver região hachurada na figura). O sistema inteiro está isolado (de forma que, por exemplo, não há pressão vinda de fora em nenhuma das superfícies dos cilindros). Encontre as razões das pressões nos três cilindros.



# Questão 05

A equação fundamental de um certo sistema de dois componentes é

$$S = NA + NR \ln \frac{U^{3/2}V}{N^{5/2}} - N_1 R \ln \frac{N_1}{N} - N_2 R \ln \frac{N_2}{N}$$

$$N \equiv N_1 + N_2,$$

onde A é uma constante. Um cilindro rígido fechado de volume total 10 litros está dividido em dois compartimentos com volumes iguais por uma membrana rígida, diatérmica e permeável ao primeiro componentes mas não ao segundo. No primeiro compartimento está uma amostra com parâmetros iniciais  $N_1^{(1)}=0,5,\,N_1^{(2)}=0,75,\,V_1=5$  litros e  $T_1=300$  K. No segundo compartimento está uma amostra com

parâmetros iniciais  $N_1^{(1)}=1,\ N_2^{(2)}=0,5,\ V_2=5$  litros e  $T_2=250$  K. Após o equilíbrio ser estabelecido, quais são os valores de  $N_1^{(1)},\ N_1^{(1)},\ T,\ P_1$  e  $P_2$ ?

## Questão 06

## Respostas

#### Questão 1

$$U_1 = 714, 3 \text{ J}; U_2 = 1785, 7 \text{ J}.$$

## Questão 2

321,4 J.

### Questão 3

 $U_1 = 1700 \text{ J}$ 

 $U_2 = 4220 \text{ J}$ 

 $V_1 = 8 \text{ litros}$ 

 $V_2 = 12 \text{ litros}$ 

 $P_1 = 1,41 \times 10^5 \text{ Pa}$ 

 $P_2 = 1,41 \times 10^5 \text{ Pa}$ 

 $T_1 = 271 \text{ K}$ 

 $T_2 = 271 \text{ K}$ 

#### Questão 4

$$P_1 = 3P_3$$

$$2P_2 = 3P_3$$

#### Questão 5

### Questão 6