Parametric four-wave mixing in atomic vapor induced by a frequency-comb and a cw laser

Jesus P. Lopez, Marcio H. G. de Miranda, Sandra S. Vianna
Universidade Federal de Pernambuco

Marco P. M. de Souza
Universidade Federal de Rondônia
The objective is to study the coherent blue light generated in rubidium vapor by four wave mixing due to the combined action of an ultrashort pulse train and a cw diode laser.
Outline

1. Lasers
2. Atomic system
3. Four-wave mixing
4. Correlated work
5. Setup
6. Experimental Results
7. Theory
8. Conclusions
Diode laser
Diode laser

- Power = 30 mW
- Linewidth < 1 MHz
- $\lambda = 780 \text{ nm}$
- Scan frequency = 10 GHz
Diode laser

- Power = 30 mW
- Linewidth < 1 MHz

\[E(t) = E_0 e^{i\omega_{cw} t} \]

- \(\lambda = 780 \) nm
- Scan frequency = 10 GHz
Femtosecond laser

\[E(t) = E_0 N - 1 \sum_{n=0}^\infty \text{sech} \left[\frac{1.76(t-nT_R)}{T_p} \right] e^{\text{in} \left(\omega_{fs} T_R - \phi \right) + i\omega_{fs} t} \]
Femtosecond laser

- Average power = 500 mW
- Peak power = 50 kW
- Repetition rate = 76 MHz
- Temporal width = 150 fs
Femtosecond laser

- Average power = 500 mW
- Peak power = 50 kW
- Repetition rate = 76 MHz
- Temporal width = 150 fs

\[E(t) = E_0 \sum_{n=0}^{N-1} \text{sech} \left(\frac{1.76(t - nT_R)}{T_p} \right) e^{i \left(\omega_{fs}T_R - \phi \right) + i \omega_{fs}t} \]
Femtosecond laser

\[E(t) \]

\[\Delta \phi \]

\[2\Delta \phi \]

\[(a) \]

\[T_R \]

\[\omega_c \]

\[1 / T_R \]

Transformada de Fourier

Marco Polo Moreno de Souza (UNIR)

FWM in Rb vapor

Seminário de grupo
Atomic system

85 Rb

- 5D_{5/2}
- 5D_{3/2}
- 5P_{3/2}
- 5P_{1/2}
- 5S_{1/2}

F' = 1
F' = 2
F' = 3
F' = 4
F' = 5

F" = 0
F" = 1
F" = 2
F" = 3
F" = 4
F" = 5

0.2 nm
776 nm
780 nm
795 nm

88 888 MHz
386 252 117 MHz
7 122 757 MHz
377 105 910 MHz

Frequência (MHz)
Transmissão (V)
Tensão (V)

Marco Polo Moreno de Souza (UNIR)
FWM in Rb vapor
Seminário de grupo
Atomic system

85Rb

- **$5D_{3/2}$**
 - 3 MHz
 - 5 MHz
 - 8 MHz
 - 9 MHz
 - 9 MHz
- **$5D_{5/2}$**
 - 19 MHz
 - 12 MHz
 - 7 MHz
- **$5P_{3/2}$**
 - 121 MHz
 - 63 MHz
 - 29 MHz
- **$5P_{1/2}$**
 - 362 MHz
 - 7 MHz
- **$5S_{1/2}$**
 - 3036 MHz

Frequencies

<table>
<thead>
<tr>
<th>Transition</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F'' = 0$</td>
<td>3 MHz</td>
</tr>
<tr>
<td>$F'' = 1$</td>
<td>5 MHz</td>
</tr>
<tr>
<td>$F'' = 2$</td>
<td>8 MHz</td>
</tr>
<tr>
<td>$F'' = 3$</td>
<td>9 MHz</td>
</tr>
<tr>
<td>$F'' = 4$</td>
<td>9 MHz</td>
</tr>
<tr>
<td>$F'' = 5$</td>
<td>29 MHz</td>
</tr>
<tr>
<td>$F' = 4$</td>
<td>121 MHz</td>
</tr>
<tr>
<td>$F'' = 3$</td>
<td>29 MHz</td>
</tr>
<tr>
<td>$F'' = 2$</td>
<td>7 MHz</td>
</tr>
<tr>
<td>$F'' = 1$</td>
<td>386 252 117 MHz</td>
</tr>
<tr>
<td>$F' = 4$</td>
<td>121 MHz</td>
</tr>
<tr>
<td>$F' = 3$</td>
<td>63 MHz</td>
</tr>
<tr>
<td>$F' = 2$</td>
<td>29 MHz</td>
</tr>
<tr>
<td>$F'' = 1$</td>
<td>7 122 757 MHz</td>
</tr>
<tr>
<td>$F' = 3$</td>
<td>362 MHz</td>
</tr>
<tr>
<td>$F'' = 2$</td>
<td>7 MHz</td>
</tr>
<tr>
<td>$F'' = 1$</td>
<td>88 888 MHz</td>
</tr>
<tr>
<td>$F = 3$</td>
<td>377 105 910 MHz</td>
</tr>
<tr>
<td>$F = 2$</td>
<td>3036 MHz</td>
</tr>
<tr>
<td>$F' = 1$</td>
<td>795 nm</td>
</tr>
<tr>
<td>$F' = 2$</td>
<td>776 nm</td>
</tr>
<tr>
<td>$F = 3$</td>
<td>780 nm</td>
</tr>
</tbody>
</table>

Transmissions

- **(a)**
 - 85Rb, $F = 1$
 - 85Rb, $F = 2$

- **(b)**
 - 87Rb, $F = 3$
 - 87Rb, $F = 2$

Marco Polo Moreno de Souza (UNIR) | FWM in Rb vapor | Seminário de grupo
Four-wave mixing is a nonlinear process that involves four electromagnetic waves.
Four-wave mixing

- Four-wave mixing is a nonlinear process that involves four electromagnetic waves.
- In general, we have three incident beams and one generated beam.
Four-wave mixing

- Four-wave mixing is a nonlinear process that involves four electromagnetic waves.
- In general, we have three incident beams and one generated beam.
- In the weak interaction limit, it is a third-order process, where the generated field can be expressed as

\[P_4 = \epsilon_0 \chi^{(3)} E_1 E_2 E_3 \]
Driven nonlinear oscillator: classical analysis

Nonlinear spring:
\[F_{el} = -kx - k_2 x^2 \]

\[F_{ext}(t) = F_0 (\cos \omega_1 t + \cos \omega_2 t) \]
Driven nonlinear oscillator: classical analysis

Nonlinear spring:

\[F_{el} = -kx - k_2x^2 \]

\[F_{ext}(t) = F_0 (\cos \omega_1 t + \cos \omega_2 t) \]

\[m\ddot{x} + \gamma \dot{x} + kx + k_2x^2 = F_{ext}(t) \]
Driven nonlinear oscillator: classical analysis

Nonlinear spring:

\[F_{el} = -kx - k_2x^2 \]

\[F_{ext}(t) = F_0 (\cos \omega_1 t + \cos \omega_2 t) \]

\[m\ddot{x} + \gamma \dot{x} + kx + k_2x^2 = F_{ext}(t) \]
Driven nonlinear oscillator: classical analysis

- Nonlinear spring:
 \[\mathbf{F}_{el} = -k \mathbf{x} - k_2 \mathbf{x}^2 \]
- \[F_{\text{ext}}(t) = F_0 (\cos \omega_1 t + \cos \omega_2 t) \]

\[m \ddot{x} + \gamma \dot{x} + k \mathbf{x} + k_2 \mathbf{x}^2 = F_{\text{ext}}(t) \]
Wave-mixing

\[
\omega_1, \omega_2 \rightarrow \begin{cases}
\omega_1 \\
\omega_2 \\
2\omega_1 \\
2\omega_2 \\
\omega_1 + \omega_2 \\
\omega_1 - \omega_2
\end{cases}
\]
Wave-mixing

\[
\omega_1, \omega_2 \rightarrow \begin{cases}
\omega_1 \\
\omega_2 \\
2\omega_1 \\
2\omega_2 \\
\omega_1 + \omega_2 \\
\omega_1 - \omega_2
\end{cases}
\]

General formula:

\[
\omega_1, \omega_2, \omega_3, \ldots \rightarrow \alpha_1 \omega_1 \pm \alpha_2 \omega_2 \pm \alpha_3 \omega_3 \pm \cdots
\]
Wave-mixing

\[\omega_1, \omega_2 \rightarrow \{ \omega_1, \omega_2, 2\omega_1, 2\omega_2, \omega_1 + \omega_2, \omega_1 - \omega_2 \} \]

General formula:

\[\omega_1, \omega_2, \omega_3, \ldots \rightarrow \alpha_1 \omega_1 \pm \alpha_2 \omega_2 \pm \alpha_3 \omega_3 \pm \cdots \]

Electromagnetism:

\[P = \varepsilon_0 \chi^{(1)} E + \varepsilon_0 \chi^{(2)} E^2 + \varepsilon_0 \chi^{(3)} E^3 + \cdots \]

\[\chi^{(1)} \approx 1 \]
\[\chi^{(2)} \approx 10^{-12} \text{ m/V} \]
\[\chi^{(3)} \approx 10^{-24} \text{ m}^2/V^2 \]
Coherent and collimated blue light generated by four-wave mixing in Rb vapour

Alexander M. Akulshin,* Russell J. McLean, Andrei I. Sidorov, and Peter Hannaford

Centre for Atom Optics and Ultrashort Spectroscopy, Swinburne University of Technology, Melbourne, Australia

*aakoulchine@swin.edu.au
Correlated work

Coherent and collimated blue light generated by four-wave mixing in Rb vapour

Alexander M. Akulshin,* Russell J. McLean, Andrei I. Sidorov, and Peter Hannaford
Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Australia
* aakoulchine@swin.edu.au

\[k_{\text{IR}} + k_1 + k_2 = k_{\text{IR}} + k_{\text{BL}} \]

\[\text{776 nm, 780 nm, 420 nm} \]
Setup

Ti:sapphire laser
500 mW
76 MHz

Diode laser
20 mW
CW

Counter

Sat. Abs.

PBS

M

L

M

M

Rb

L

F

5.2 µm
(generated)

5D_{5/2}

776 nm
Ti:sapph

6P

5P_{3/2}

420 nm
(generated)

780 nm
Diode

5S_{1/2}

Marco Polo Moreno de Souza (UNIR)
FWM in Rb vapor
Seminário de grupo
12 / 25
Mesa óptica
Experimental Results

- $I_{cw} = 1.9 \ \text{W/cm}^2$
- $I_{fs} = 1.0 \ \text{mW/cm}^2$ (each mode)
- $T = 85^\circ\text{C}$
Experimental Results

- $I_{cw} = 1.9 \text{ W/cm}^2$
- $I_{fs} = 1.0 \text{ mW/cm}^2$ (each mode)
- $T = 85^\circ\text{C}$
- Broad peaks: fluorescence induced by both lasers
Experimental Results

- $I_{cw} = 1.9$ W/cm2
- $I_{fs} = 1.0$ mW/cm2 (each mode)
- $T = 85^\circ$C
- Broad peaks: fluorescence induced by both lasers
- Flat Background: fluorescence induced by femtosecond laser

![Graph showing FWM in Rb vapor](image-url)
Polarization and density dependence

![Graph showing polarization and density dependence](image)
Experimental Results

Polarization and density dependence

![Graph showing polarization and density dependence](image)

Blue intensity (arb. units) vs. Diode frequency (GHz)

- Blue fluorescence at 90°
- Parallel polarization
- Perpendicular polarization

Rubidium vapor

Marco Polo Moreno de Souza (UNIR)
Experimental Results

Polarization and density dependence

Blue intensity (arb. units)

Diode frequency (GHz)

Blue fluorescence at 90°

parallel polarization

perpendicular polarization

Rubidium vapor

(a) $^{87}\text{Rb}, F_g = 2$

(b) $^{85}\text{Rb}, F_g = 3$

(c) $82 °C$

(d) $87 °C$

Marco Polo Moreno de Souza (UNIR)

FWM in Rb vapor

Seminário de grupo
Experimental Results

- $T = 85^\circ C$
- Slow scanning
- Average of 10 measurements

![Graph showing experimental results for $^{85}\text{Rb, } F_g = 3$]
Experimental Results

- $T = 85^\circ C$
- Slow scanning
- Average of 10 measurements
- Peak linewidths: ≈ 55 MHz

![Graph showing FWM in Rb vapor with $^{85}\text{Rb, } F_g = 3$)](image-url)
Experimental Results

- $T = 85^\circ\text{C}$
- Slow scanning
- Average of 10 measurements
- Peak linewidths: ≈ 55 MHz
- Frequency difference between two adjacent peaks: 78 ± 4 MHz
Density dependence

- Femtosecond and diode lasers in resonance with your transitions

![Graph showing exponential growth and threshold shift as a function of diode intensity.

Atomic density (10^{12} cm^{-3}) vs. PFWM signal amplitude (arb. units).

I_{cw} = 1.9 \text{ W/cm}^2

I_{cw} = 9.4 \text{ W/cm}^2

Marco Polo Moreno de Souza (UNIR)
Density dependence

- Femtosecond and diode lasers in resonance with your transitions
- Exponential growth
Density dependence

- Femtosecond and diode lasers in resonance with your transitions
- Exponential growth
- “Threshold” shift as a functions of the diode intensity
Diode intensity dependence

![Graph showing diode intensity dependence](image)

- Diode power:
 - 0.5 mW
 - 2 mW
 - 4 mW
 - 6 mW
 - 8 mW
 - 10 mW

- Blue intensity (arb. units) vs. Diode frequency (MHz)

Marco Polo Moreno de Souza (UNIR)
Diamond-type four-level system interacting with four cw lasers.

- Ω_1: diode laser
- Ω_2: one mode of the femtosecond laser
- Ω_3: seed field
- Ω_4: blue beam generated
Diamond-type four-level system interacting with four cw lasers.

- Ω_1: diode laser
- Ω_2: one mode of the femtosecond laser
- Ω_3: seed field
- Ω_4: blue beam generated

\[\hat{H}_{int} = -\hat{\mu} \cdot E \]

(Dipole electric approximation)
Maxwell-Bloch equations

\[\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] \]
(Liouville-Neumann)

\[\frac{\partial^2 E}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P}{\partial t^2} \]
(Wave equation)

\[P = N \langle \hat{\mu} \rangle \]
(Polarization)
Maxwell-Bloch equations

\[
\frac{\partial \rho_{jk}(z, t)}{\partial t} = -(i\omega_{jk} + \gamma_{jk})\rho_{jk}(z, t) - \frac{i}{\hbar} \langle j | [\hat{H}_{\text{int}}, \hat{\rho}] | k \rangle \\
\frac{\partial \Omega_j(z, t)}{\partial z} = -i\alpha_{jk}\gamma_{jk}\sigma_{jk}(z, t)
\]

where

\[
\Omega_j = \frac{\mu_{jk} E_0^j}{\hbar} \quad \text{(Rabi frequency)}
\]

\[
\alpha_{jk} = \frac{\mu_{jk}^2 \omega_j}{2\hbar c \epsilon_0 \gamma_{jk}} N
\]

\[
\sigma_{jk} = \rho_{jk} e^{-i\omega_j t}
\]
Theoretical result

- Numerical solution of the equations: Runge-Kutta method
- All field at resonance
- Initial conditions: $\Omega_2 = 2.4\gamma_{33}$, $\Omega_3 = 2.4 \times 10^{-7}\gamma_{33}$ and $\Omega_4 = 0$.

![Graph showing Ω_1 (normalized) vs $\alpha_{12}Z$ and Ω_4 (rad/s) vs $\alpha_{12}Z$ with lines for Diode and Blue.](image)
Theoretical result

- Numerical solution of the equations: Runge-Kutta method
- All field at resonance
- Initial conditions: $\Omega_2 = 2.4\gamma_{33}$, $\Omega_3 = 2.4 \times 10^{-7}\gamma_{33}$ and $\Omega_4 = 0$.

\[\Omega_1 \text{ (normalized)} \]

\[\Omega_4 \text{ (rad/s)} \]

\[\alpha_{12}Z \]

\[\rho_{11}, \rho_{22}, \rho_{33}, \rho_{44} \]
Theoretical result

\[\Omega_1 = 0.7 \gamma_{22} \]

\[\Omega_1 = 1.4 \gamma_{22} \]
We have investigated the coherent blue light generated in atomic vapor using a parametric four-wave mixing process due to the combined action of a cw laser and a train of ultrashort pulses.

Each individual mode is responsible for inducing the nonlinear process.

Blue signal characterization: exponential growth with saturation.

The density dependence was theoretically modeled.

Next step: frequency dependence modeling (with CUDA!).
Thank you very much!