Parametric four-wave mixing in atomic vapor induced by a frequency-comb and a cw laser

Jesus P. Lopez, Marcio H. G. de Miranda, Sandra S. Vianna
Departamento de Física, Universidade Federal de Pernambuco

Marco P. M. de Souza
Depart. de Física, Universidade Federal de Rondônia, Campus Ji-Paraná
The objective is to study the coherent blue light generated in rubidium vapor due to the combined action of an ultrashort pulse train and a cw diode laser.
Four-wave mixing is a nonlinear process that involves four electromagnetic waves.

\[
\mathcal{P}_4 = \epsilon_0 \chi^{(3)} E_1 E_2 E_3
\]
Four-wave mixing is a nonlinear process that involves four electromagnetic waves.

In general, we have three incident beams and one generated beam.
Four-wave mixing is a nonlinear process that involves four electromagnetic waves.

In general, we have three incident beams and one generated beam.

In the weak interaction limit, it is a third-order process. We are interested in the generated field that is the result from the polarization that can be expressed as

\[P_4 = \varepsilon_0 \chi^{(3)} E_1 E_2 E_3 \]
Coherent and collimated blue light generated by four-wave mixing in Rb vapour

Alexander M. Akulshin,* Russell J. McLean, Andrei I. Sidorov, and Peter Hannaford

Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Australia

*aakoulchine@swin.edu.au
Coherent and collimated blue light generated by four-wave mixing in Rb vapour

Alexander M. Akulshin, Russell J. McLean, Andrei I. Sidorov, and Peter Hannaford

Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Australia

aakoulchine@swin.edu.au
Marco Polo Moreno de Souza (UNIR)

FWM in Rb vapor

Seminário de grupo 5 / 16
Experimental Results

- $I_{cw} = 1.9 \, \text{W/cm}^2$
- $I_{fs} = 1.0 \, \text{mW/cm}^2$
 (each mode)
- $T = 85^\circ \text{C}$
Experimental Results

- $I_{cw} = 1.9 \text{ W/cm}^2$
- $I_{fs} = 1.0 \text{ mW/cm}^2$
 (each mode)
- $T = 85^\circ C$
- Broad peaks:
 fluorescence induced by both lasers

![Graph showing blue intensity vs. diode frequency](image-url)
Experimental Results

- $I_{cw} = 1.9 \text{ W/cm}^2$
- $I_{fs} = 1.0 \text{ mW/cm}^2$ (each mode)
- $T = 85^\circ C$
- Broad peaks: fluorescence induced by both lasers
- Flat Background: fluorescence induced by femtosecond laser
Polarization and density dependence
Polarization and density dependence

![Graph showing polarization and density dependence](image_url)

Blue fluorescence at 90°

Parallel polarization

Perpendicular polarization

Diode frequency (GHz)

Blue intensity (arb. units)
Experimental Results

Polarization and density dependence

Blue intensity (arb. units)

Diode frequency (GHz)

Blue fluorescence at 90°

parallel polarization

perpendicular polarization

(a) $^{87}\text{Rb}, F_g = 2$

72 °C

(b) $^{85}\text{Rb}, F_g = 3$

73 °C

(c) 82 °C

(d) 87 °C

Marco Polo Moreno de Souza (UNIR)

FWM in Rb vapor

Seminário de grupo
Experimental Results

- $T = 85^\circ C$
- Slow scanning
- Average of 10 measurements

Peak linewidths: ≈ 55 MHz

Frequency difference between two adjacent peaks: 78 ± 4 MHz

Graph:
- Blue intensity (arb. units) vs. Diode frequency (MHz)
- $^{85}\text{Rb, } F_g = 3$
Experimental Results

- $T = 85^\circ C$
- Slow scanning
- Average of 10 measurements
- Peak linewidths: ≈ 55 MHz
Experimental Results

- $T = 85^\circ\text{C}$
- Slow scanning
- Average of 10 measurements
- Peak linewidths: $\approx 55\ \text{MHz}$
- Frequency difference between two adjacent peaks: $78 \pm 4\ \text{MHz}$
Density dependence

- Femtosecond and diode lasers in resonance with your transitions

\[I_{cw} = 9.4 \text{ W/cm}^2 \]

\[I_{cw} = 1.9 \text{ W/cm}^2 \]
Density dependence

- Femtosecond and diode lasers in resonance with your transitions
- Exponential growth

![Graph showing the relationship between atomic density and PFWM signal amplitude](image)
Density dependence

- Femtosecond and diode lasers in resonance with your transitions
- Exponential growth
- “Threshold” shift as a function of the diode intensity

![Graph showing the relationship between atomic density and PFWM signal amplitude. The graph has two distinct regions with different slopes, indicating the threshold behavior. Two specific values are highlighted: $I_{cw} = 1.9 \text{ W/cm}^2$ and $I_{cw} = 9.4 \text{ W/cm}^2$. The x-axis represents atomic density in units of 10^{12} cm^{-3}, and the y-axis represents PFWM signal amplitude in arbitrary units.]
Theory

- Diamond-type four-level system interacting with four cw lasers.
 - Ω_1: diode laser
 - Ω_2: one mode of the femtosecond laser
 - Ω_3: seed field
 - Ω_4: blue beam generated
Diamond-type four-level system interacting with four cw lasers.

- Ω_1: diode laser
- Ω_2: one mode of the femtosecond laser
- Ω_3: seed field
- Ω_4: blue beam generated

$$\hat{H}_{int} = -\hat{\mu} \cdot E$$

(Dipole electric approximation)
Maxwell-Bloch equations

\[\frac{\partial \hat{\rho}}{\partial t} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho} \right] \quad \text{(Liouville-Neumann)} \]

\[\frac{\partial^2 E}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P}{\partial t^2} \quad \text{(Wave equation)} \]

\[P = N \langle \hat{\mu} \rangle \quad \text{(Polarization)} \]
Maxwell-Bloch equations

\[
\frac{\partial \rho_{jk}(z, t)}{\partial t} = -(i\omega_{jk} + \gamma_{jk})\rho_{jk}(z, t) - \frac{i}{\hbar} \langle j | [\hat{H}_{\text{int}}, \hat{\rho}] | k \rangle
\]

\[
\frac{\partial \Omega_j(z, t)}{\partial z} = -i \alpha_{jk} \gamma_{jk} \sigma_{jk}(z, t)
\]

where

\[
\Omega_j = \frac{\mu_{jk} E_j^0}{\hbar} \quad \text{(Rabi frequency)}
\]

\[
\alpha_{jk} = \frac{\mu_{jk}^2 \omega_j}{2\hbar c \epsilon_0 \gamma_{jk}} N
\]

\[
\sigma_{jk} = \rho_{jk} e^{-i\omega_j t}
\]
Theoretical result

- Numerical solution of the equations
- All fields at resonance
- Initial conditions:
 \[\Omega_1 = 0.7\gamma_{22}, \Omega_2 = 2.4\gamma_{33}, \Omega_3 = 2.4 \times 10^{-7}\gamma_{33} \text{ and } \Omega_4 = 0 \]
 \[\rho_{11} = 1, \rho_{ij} = 0 \text{ for } (i,j) \neq (1,1) \]
Theoretical result

- Numerical solution of the equations
- All fields at resonance
- Initial conditions:
 \[\Omega_1 = 0.7 \gamma_{22}, \quad \Omega_2 = 2.4 \gamma_{33}, \quad \Omega_3 = 2.4 \times 10^{-7} \gamma_{33} \text{ and } \Omega_4 = 0 \]
 \[\rho_{11} = 1, \quad \rho_{ij} = 0 \text{ for } (i, j) \neq (1, 1) \]
Theoretical result

\[\Omega_1 = 0.7\gamma_{22} \]
\[\Omega_1 = 1.4\gamma_{22} \]
Conclusions

- We have investigated the coherent blue light generated in atomic vapor using a parametric four-wave mixing process due to the combined action of a cw laser and a train of ultrashort pulses.
- Many modes can be responsible for inducing the nonlinear process.
- Blue signal characterization: exponential growth with saturation.
- The density dependence was theoretically modeled.
- Next step: frequency diode dependence modeling with CUDA parallel programming (See poster P116 this afternoon).
Thank you very much!