

Óptica Lista de Problemas 2.2

Departamento de Física de Ji-Paraná Universidade Federal de Rondônia Prof. Marco Polo

Questão 01

Uma fenda é iluminada com um feixe de luz que contém os comprimentos de onda λ_a , e λ_b , escolhidos de tal forma que o primeiro mínimo de difração da componente λ_a , coincide com segundo mínimo da componente λ_b .

- (a) Se $\lambda_b = 350$ nm, qual é o valor de λ_a ?

 Determine para que número de ordem m_b , um mínimo da componente λ_b , coincide com o mínimo da componente λ_a , cujo número de ordem é
- (b) $m_a = 2$
- (c) $m_a = 3$.

Questão 02

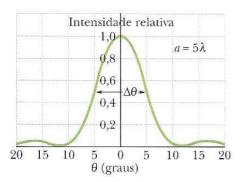
Um deixe de luz com um comprimento de onda de 633 nm incide em uma fenda estreita. O ângulo entre o primeiro mínimo de difração de um lado do máximo central e o primeiro mínimo de difração do outro lado é 1,20°. Qual é a largura da fenda?

Questão 03

A distância entre o primeiro e o quinto mínimo da figura de difração de uma fenda é 0,35 mm com a tela a 40 cm de distância da fenda quando é usada uma luz com um comprimento de onda de 550 nm.

- (a) Determine a largura da fenda.
- (b) Calcule o ângulo do primeiro mínimo de difração.

Uma fenda com 1,00 mm de largura é iluminada com uma luz cujo comprimento de onda é 589 nm. Uma figura de difração é observada em uma tela situada a 3,00 m de distância da fenda. Qual é a distância entre os primeiros dois mínimos de difração situados do mesmo lado do máximo central?


Questão 05

Uma luz monocromática com um comprimento de onda de 538 nm incide em uma fenda com 0,025 mm de largura. A distância entre a fenda e a tela é 3,5 m. Considere um ponto da tela situado a 1,1 cm de distância do máximo central. Calcule

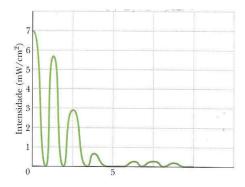
- (a) o valor de θ nesse ponto,
- (b) o valor de α e
- (c) a razão entre a intensidade nesse ponto e a intensidade do máximo central.

Questão 06

A largura total à meia altura (FWHM) de um máximo central de difração é definida como o ângulo entre os dois pontos nos quais a intensidade é igual à metade da intensidade máxima. (Veja a figura).

- (a) Mostre que a intensidade é metade da intensidade máxima quando $sen^2\alpha = \alpha^2/2$.
- (b) Verifique que $\alpha = 1,39$ rad (aproximadamente 80°) é uma solução para a equação transcendental do item (a).

- (c) Mostre que a FWHM é dada por $\Delta\theta = 2\arcsin(0,443\lambda/a)$, onde a é a largura da fenda.
 - Calcule a FWHM do máximo central para fendas cujas larguras correspondem a
- (d) $1,00\lambda$;
- (e) $5,00\lambda$;
- (f) $10, 0\lambda$.

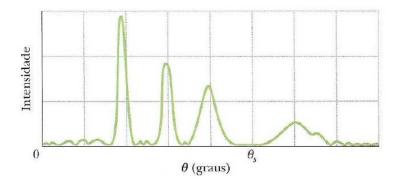

Em um experimento de dupla fenda a distância entre as fendas, d, é 2,00 vezes maior que a largura w das fendas. Quantas franjas claras existem na envoltória central de difração?

Questão 08

A envoltória central de difração de uma figura de difração por duas fendas contém 11 franjas claras, e os primeiros mínimos de difração eliminam (coincidem com) franjas claras. Quantas franjas de interferência existem entre o primeiro e o segundo mínimos da envoltória?

Questão 09

Uma luz com um comprimento de onda de 440 nm passa por um sistema de dupla fenda e produz uma figura de difração cujo gráfico de intensidade I em função da posição angular θ aparece na figura. Determine


- (a) a largura das fendas e
- (b) a distância entre as fendas.
- (c) Mostre que as intensidades máximas indicadas para as franjas de interferência com m=1 e m=2 estão corretas.

Uma grade de difração com 20,0 mm de largura possui 6000 ranhuras. Uma luz com um comprimento de onda de 589 nm incide perpendicularmente na rede. Determine

- (a) o maior,
- (b) o segundo maior e
- (c) o terceiro maior valor de para o qual são observados máximos em uma tela distante.

Questão 11

A figura mostra um gráfico da intensidade em função da posição angular θ para a difração de um feixe de raios X por um cristal. A escala do eixo horizontal é definida por $\theta_s = 2,00^\circ$. O feixe contém dois comprimentos de onda, e a distância entre os planos refletores é 0,94 nm. Determine

- (a) o menor e
- (b) o maior comprimento de onda do feixe.

Respostas

${\bf Quest\~ao}~1$

- (a) 700 nm
 - (b) 4
 - (c) 6

Questão 2

60,4 $\mu\mathrm{m}$

Questão 3

- (a) 2,5 mm
 - (b) $2, 2 \times 10_{-4}$ rad

Questão 4

 $1{,}77~\mathrm{mm}$

Questão 5

- (a) 0.18°
 - (b) 0,46 rad
 - (c) 0.93

Questão 6

- (d) $52,5^{\circ}$
 - (e) $10,1^{\circ}$
 - (f) $5,06^{\circ}$

Questão 7

3

Questão 8

5

Questão 9

- (a) 5,0 μ m
 - (b) 20 μm

- (a) $62,1^{\circ}$
 - (b) $45,0^{\circ}$
 - (c) $32,0^{\circ}$

Questão 11

- (a) 25 pm
 - (b) 38 pm