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Dynamic Stark shift in Doppler-broadened four-wave mixing

M. P. M. de Souza *

Departamento de Física, Universidade Federal de Rondônia, 76900-726, Ji-Paraná, Rondônia, Brazil

A. A. C. de Almeida and S. S. Vianna
Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil

(Received 26 January 2022; accepted 6 May 2022; published 31 May 2022)

This work presents a theoretical analysis of the Autler-Townes splitting pattern in the four-wave mixing signal
generated in a three-level cascade Doppler-broadened system. We employ the density matrix formalism to write
the Bloch equations and solve them numerically. The solutions allow us to compare the response of the upper
level population and the generated signal coherence for homogeneously and nonhomogeneously broadened
systems. Our results reveal an AC Stark shift in the nonlinear signal when the frequency of the strong or weak
laser beam is scanned, in contrast to what is observed in the fluorescence. Furthermore, we present experimental
data for the four-wave mixing signal in a hot rubidium vapor for the copropagating configuration of the laser
beams that drive the 5S → 5P → 5D transition. The behavior of the AC Stark displacement and signal amplitude
as a function of laser power indicates a good agreement between the model and the experimental results.
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I. INTRODUCTION

The dynamic Stark shift, also known as the AC Stark effect,
is a critical process in the light-matter interaction subject. It is
responsible for the energy-level splitting at a transition driven
by a near-resonant strong field. One of the consequences in
fluorescent spectroscopy is the Mollow triplet [1,2], explained
by the split of the “bare” atom states into two “dressed” states
whose separation is dependent on the Rabi frequency. The AC
Stark effect is also known as the Autler-Townes (AT) splitting,
a common name of the phenomenon in three-level systems
[3,4]. In this case, a weak field tuned near one of the transition
probes the Stark-shifted levels stimulated by a strong field
laser coupled in the other transition. The result is a double
peak in the weak field absorption. This Autler-Townes doublet
has been intensively investigated in atomic and molecular
spectroscopy. As the splitting amplitude depends on the Rabi
frequency of the transitions, the AT splitting has been used to
measure transition dipole moments and lifetimes of highly ex-
cited states [5,6]. Other applications include quantum memory
storage [7] and microwave propagation in transmission lines
[8].

Usually, for a three-level cascade system, two counter-
propagating laser beams are used to explore the almost
Doppler-free configuration, especially when the wavelength
difference of the two transitions is very small. The first
works investigating the AT splitting in a Doppler-broadened
medium date from the 1970s [9–11]. In this case, and for the
high-intensity regime, it is challenging to model the system
analytically. A more viable alternative is to use numerical
methods, as previous papers have done. An example is the
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work of Ahmed and Lyyra [12], which investigated the critical
role of Doppler width on the observation of the AT splitting
for co and counterpropagating beams. In particular, they show
that the presence of the AT splitting in the fluorescence not
only depends on the Rabi frequency but also on the ratio
between the wave numbers of the coupling and probe laser
beams. Moreover, for copropagating beams, this phenomenon
is difficult to be observed. However, as we show in this work,
the AT doublet can be distinguished in a four-wave mixing
(FWM) using a copropagating setup.

The AT splitting also appears, naturally, in light gen-
eration by parametric processes since these typically use
high-intensity beams. One of the pioneering works was pre-
sented by Boyd et al. in 1981 [13], in which the signal
produced by a FWM process in a two-level system was the-
oretically studied as a function of the probe beam detuning.
The combination of parametric emission and velocity dis-
tribution introduced the possibility of quantum interference
between oscillating atomic dipoles, such as that reported
by Zuo and collaborators [14], a fact that can signifi-
cantly modify the macroscopic polarization generated by the
medium.

In this work, we discuss how the Autler-Townes splitting
manifests itself in the FWM process in a three-level cascade
Doppler-broadened sample. In particular, we are interested in
understanding the AT splitting observed in the FWM signal
generated when two copropagating beams excite the 5S →
5P → 5D transitions. One characteristic of this system is that
only two transitions are controlled by external laser beams,
whereas the third transition of the FWM process is performed
via an amplified spontaneous emission (ASE) process [15,16].
This system appears as a good candidate in quantum infor-
mation science and has been successfully used to perform an
optical vortex conversion from IR to blue frequencies [17,18].
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FIG. 1. Stark-shifted rubidium level diagram considering a
strong field in the |1〉 → |2〉 transition. �i j and δi j are the Rabi
frequency and the detuning of the fields regarding the |i〉 → | j〉
transition, respectively.

In this context, we present theoretical results of the spec-
trum of the coherent blue light (CBL) and fluorescence
generated in rubidium vapor as a function of parameters such
as detuning and intensities of the incident beams. Our focus
is to understand the contribution of the different atomic group
velocities in the AT splitting, whether we scan the frequency
of the weak or the strong laser beam. The theoretical analysis
allows us to understand the doublet structure observed in the
FWM signal. Specifically, our experimental results reveal an
AT splitting in the nonlinear signal, regardless of which laser
beam we scan the frequency, in contrast to what is observed
in the fluorescence.

In Sec. II, we present a theoretical model using Bloch’s
equations. We solve these equations numerically with a
fourth-order Runge-Kutta method. With the solutions of each
term at hand, we analyze the velocity dependence of the FWM
output, as well as the fluorescence in Sec. III. For this, we
investigate both frequency scanning schemes of the weak and
strong beams. Section IV is devoted to including the Doppler-
broadening and showing its importance to the manifestation of
the AT splitting in the experimental signal. The comparison
with the experimental data is in Sec. V, in which we also
detail the experimental setup. We conclude by summarizing
the relevant achievements of this work in Sec. VI.

II. ATOMIC SYSTEM AND BLOCH EQUATIONS

We model our problem with a four-level system based on
the rubidium excitation route 5S1/2 → 5P3/2 → 5D5/2 → 6P3/2.
We label each of these states with a number to simplify
the notation, as shown in Fig. 1. Our focus is on the CBL
generated near the |4〉 → |1〉 transition (420 nm) when three
continuous-wave (cw) input fields with Rabi frequencies �12,
�23, and �34 copropagate through the Doppler-broadened
rubidium atoms.

We write the electric fields present in the Hamiltonian as
El (r, t ) = εlEl e−i(kl ·r−ωl t ) + c.c., where εl is the polarization

vector, El are the amplitudes of the fields, kl are the wave
vectors, ωl are the frequencies of each field, and c.c. means
complex conjugate. With this, the Rabi frequency for the
| j〉 → |k〉 transition is defined as � jk = μ jkEl/h̄, where μ jk =
〈 j| (μ̂ · εl ) |k〉, with j �= k, is the transition dipole matrix el-
ement. Moreover, in the calculations that follow, we neglect
the spatial part of the fields, as we are only interested in the
spectral part of the FWM process.

The field in the |1〉 → |2〉 transition is intense and, there-
fore, the Stark effect splits the level structure, leading to new
resonances associated with the dressed states |1 ±〉 and |2 ±〉.
These new states have an energy shift given by [19]

ω1± = −δ12

2
± 1

2

√
4�2

12 + δ2
12, (1a)

ω2± = +δ12

2
± 1

2

√
4�2

12 + δ2
12, (1b)

where δi j is the detuning of the fields regarding the |i〉 → | j〉
transition.

We begin the analysis employing the density-matrix for-
malism with Liouville’s equation

∂ρ̂

∂t
= − i

h̄

[
Ĥ , ρ̂

] + decaying terms, (2)

where ρ̂ is the density matrix operator and Ĥ is the Hamil-
tonian of the system including the light-matter interaction in
the electric dipole approximation. The matrix representation
of the Hamiltonian Ĥ , in the rotating wave approximation, is

Ĥ = h̄

⎛
⎜⎝

0 −�′
12 0 −�′

14−�′∗
12 ω21 −�′

23 0
0 −�′∗

23 ω31 −�′
34−�′∗

14 0 −�′∗
34 ω41

⎞
⎟⎠. (3)

In this notation, ω jk = (Ej − Ek )/h̄ are the resonance fre-
quencies of the |k〉 → | j〉 transitions and �′

jk ≡ � jkeiωt , in
which ω is the laser frequency. For a group of atoms with
velocity component v in the direction of the propagation of
the lasers, we write the Bloch equations as

ρ̇11 = −i�12σ12 + c.c. − i�14σ14 + c.c.

+�22ρ22 + �41ρ44, (4a)

ρ̇22 = i�12σ12 + c.c. − i�23σ23 + c.c.

−�22ρ22 + �32ρ33, (4b)

ρ̇33 = i�23σ23 + c.c. − i�34σ34 + c.c.

−(�32 + �34)ρ33, (4c)

ρ̇44 = −i�34σ23 + c.c. + i�14σ14 + c.c.

+�34ρ33 − �41ρ44, (4d)

σ̇12 = [i(δ12 − k12v) − γ12]σ12 + i�14σ42

−i�23σ13 + i�12(ρ22 − ρ11), (4e)

σ̇23 = [i(δ23 − k23v) − γ23]σ23 + i�12σ13

−i�43σ24 + i�23(ρ33 − ρ22), (4f)

σ̇14 = [i(δ14 − k14v) − γ14]σ14 + i�12σ24

−i�43σ13 + i�14(ρ44 − ρ11), (4g)
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σ̇43 = [i(δ43 − k43v) − γ43]σ43 + i�14σ13

−i�23σ42 + i�43(ρ33 − ρ44), (4h)

σ̇13 = [i(δ12 + δ23 − (k12 + k23)v) − γ13]σ13

+i�12σ23 + i�14σ43 − i�23σ12 − i�43σ14, (4i)

σ̇24 = [i(δ14 − δ12 − (k14 − k12)v) − γ24]σ24

+i�12σ14 + i�23σ34 − i�14σ21 − i�43σ23, (4j)

where γ jk represent the relaxation rates of the coherences, � jk

is the population spontaneous relaxation rate from a |k〉 state
to a | j〉 state, δ jk and k jk are the detuning and wave number
of the field associated to the Rabi frequency � jk , and σ jk ≡
ρ jke−iω jk t is the slow envelope of the coherence ρ jk .

Out of all elements of the density matrix, we are interested
in the coherence σ14 and the population of the state |3〉, ρ33.
The square modulus of σ14 renders the FWM signal while the
upper state population represents the fluorescence emitted by
the atoms. To compare the results with the experimental data,
one must take into account the contribution of all velocity
groups of the hot vapor

ρ̄33 =
∫ ∞

−∞
ρ33(v) f (v)dv, (5a)

σ̄14 =
∫ ∞

−∞
σ14(v) f (v)dv, (5b)

where f (v) is the Maxwell-Boltzmann velocity distribution.
The results presented in the following sections were ob-

tained by solving the Bloch equations [Eqs. (4)] numerically
using the fourth-order Runge-Kutta method from time t = 0
to t = 2 μs (code available in Ref. [20]). The integration time
is approximately the average transit time of the atoms through
laser beams with a 0.2-mm diameter. The initial conditions
are ρ11(0) = 1 and ρ22(0) = ρ33(0) = ρ44(0) = σi j (0) = 0.
Since this is a very demanding calculation, we use three
graphics processing units (Nvidia RTX 2070 Super) to solve
the differential equations for all velocity groups simultane-
ously. The numerical parameters we use in all computations of
this work are in Table I. To simulate the amplified spontaneous
emission that occurs in the 5D → 6P transition [15], we chose
a small Rabi frequency value for the 5.23 μm field (�34 =
1 rad/s) to act as a seed in the FWM process. Furthermore,
we fix the frequency of this field on resonance (δ34 = 0) and,
consequently, δ14 = δ12 + δ23 − δ34 due to the energy conser-
vation.

III. VELOCITY DEPENDENCE OF THE POPULATION ρ33

and THE FWM SIGNAL

It is interesting that, before adding the contribution of all
atoms, introducing the Doppler-broadening, we investigate
the dependence of the fluorescence and the FWM signal with
different individual atomic velocity groups. We consider two
frequency scanning scenarios, sweeping either the frequency
of the weak beam (�23) or the frequency of the strong beam
(�12).

TABLE I. Numerical parameters for the theoretical model.

Decay rates (MHz)

�22 2π × 6.06a

�33 2π × 0.66a

�44 2π × 1.3a

�32 0.65�33

�34 0.35�33

γ12 �22/2
γ23 (�33 + �22)/2
γ34 (�33 + �44)/2
γ14 �44/2
γ13 �33/2
γ24 (�44 + �22)/2
Wavelengths (nm)
λ12 780
λ23 776
λ34 5300
λ14 420

aData from Ref. [21].

A. Weak beam frequency sweeping

The first case we analyze is when the frequency of the weak
beam �23 is scanning while the strong beam is on resonance
with the |1〉 → |2〉 transition (δ12 = 0) for the zero velocity
group. In Fig. 2(a), we present the population of the upper
state ρ33 as a function of δ23 for many velocity groups.

The behavior of the population ρ33 for three specific veloc-
ity groups is highlighted in Fig. 2(b), where it is possible to
see the doublet structure due to the Autler-Townes effect [3].
Considering k12 ≈ k23 ≡ k, the peaks of the doublets shown
in Fig. 2(b) arise when the two-photon condition is satisfied.
Therefore, we solve the equation δ23 − kv + ω2± = 0 and find

FIG. 2. (a) ρ33 as a function of δ23 and v, considering
�12/(2π ) = 12 MHz, �23/(2π ) = 0.6 MHz, and δ12 = 0. (b) ρ33 for
three velocity groups. (c) ρ33 integrated over the Maxwell-Boltzmann
distribution.
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FIG. 3. (a) |σ14(v)|2 as a function of δ23, for many veloc-
ity groups, considering �12/2π = 12 MHz, �23/2π = 0.6 MHz,
and δ12 = 0. (b) |σ14(v)|2 for three velocity groups. (c) Blue:
σ14 integrated over the Maxwell-Boltzmann distribution and then
squared. Dashed line: |σ14|2 integrated over the Maxwell-Boltzmann
distribution

that ([9])

δ23 = 3kv

2
± 1

2

√
4�2

12 + k2v2. (6)

Whenever v �= 0, the doublet is asymmetric, as the red
curve in Fig. 2(b) indicates. Furthermore, the nearest side-
band from the resonance is always smaller [22]. Although
specific velocity groups might have a level splitting, the
Doppler-broadening hides the AT effect, as it is possible to
observe in Fig. 2(c). This result is also in agreement with
the discussion in Ref. [9]: one should observe a larger power
broadening without any splitting in the fluorescence signal.
Consequently, it is unlikely to observe the splitting in ex-
periments that detect only fluorescence. However, as we will
show, the FWM can reveal this effect even after the Doppler
integration.

In Fig. 3, we present a similar analysis for the coherence
σ14, that is, we first look at the response of each velocity group
and then get the total response of the Doppler-broadening
medium. In this case, as we are interested in the FWM signal,
we look not at the coherence, but its squared modulus. The
color map of Fig. 3(a) presents a doublet structure, as did
Fig. 2(a), but with a different shape. To better understand
this curve, we can look at a few specific velocity groups in
Fig. 3(b). Each of these curves has its peak positions dictated
by Eq. (6), connecting its origin to the FWM process.

It is important to note that we present the square modulus
of σ14 to each velocity group in Figs. 3(a) and 3(b). However,
to plot the actual FWM signal, one must first integrate the co-
herence σ14 with the Maxwell-Boltzmann distribution to, only
then, take its squared modulus, as shown in the blue curve of
Fig. 3(c). We perform the calculations in this particular order
to avoid neglecting the phases between each velocity group.
As discussed in Ref. [14], the macroscopic field polarization

FIG. 4. (a) ρ33 as a function of δ12 and v, considering
�12/(2π ) = 12 MHz, �23/(2π ) = 0.6 MHz, and δ23 = 0. (b) ρ33 for
three velocity groups. (c) ρ33 integrated over the Maxwell-Boltzmann
distribution.

from different ensembles of atoms within the atomic velocity
groups can interfere, causing a significant modification of
the FWM spectra. To support this argument, we present the
dashed curve of Fig. 3(c), in which first we take the squared
modulus of the coherence and then integrate it. Notice that,
even though the splitting is present, the frequency distance
between the peaks is higher than in the blue curve.

Comparing Figs. 2(b) and 3(b), one can see that the behav-
ior of the coherence σ14 is much different from the population
ρ33 when it comes to the nonzero velocity groups (see the
green and red curves). Once the velocity increases, there is a
dramatic difference in the coherence response near resonance.
The AC Stark effect takes place and splits the level structure
for each velocity group, as in the red curve of Fig. 3(b). How-
ever, one of the peaks, the one near resonance, is very small.
Once all the groups add up in the Doppler integration, they
contribute to the FWM signal in the blue curve of Fig. 3(c)
with a doublet-like structure. The same argument applies to
the population ρ33. However, in this case, the difference be-
tween the peaks’ amplitude is not as dramatic as with the
coherence, so once the groups add up, the splitting is gone.

B. Strong beam sweeping

Here we analyze an unusual case, where the presence of
Stark shift is investigated as a function of the strong field
detuning, δ12. Using again Eq. (1b) and the resonance of two
photons with the frequency of the weak field fixed at the
resonance (δ23 = 0), we obtain the following equation for the
peak position, considering v �= 0:

δ12 = 2k2v2 − �2
12

kv
. (7)

We present the results of the upper population ρ33 in
Figs. 4(a) and 4(b) as a function of δ12 considering �12 =
2π × 12 MHz, �23 = 2π × 0.6 MHz and δ23 = 0. It is
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FIG. 5. (a) |σ14(v)|2 as a function of δ12, for many veloc-
ity groups, considering �12/2π = 12 MHz, �23/2π = 0.6 MHz,
and δ23 = 0. (b) |σ14(v)|2 for three velocity groups. (c) Blue:
σ14 integrated over the Maxwell-Boltzmann distribution and then
squared; Dashed line: |σ14|2 integrated over the Maxwell-Boltzmann
distribution

interesting to notice that the two-photon resonance condition
for v = 0 is never satisfied, and it is necessarily a far-detuned
�12 field if v is very small (v < 3 m/s). The ρ33 population
represented by the black and red curves in Fig. 4(b) comes
from a nonresonant situation because the �23 field does not
resonate with the Stark-shifted sidebands ω2±. The green
curve, on the other hand, comes from an exact two-photon
resonance, which implies a higher thin peak. As Eq. (7) has a
single solution, there is not a doublet-like structure. When the
Doppler integration is taken into account, the contribution of
the nonresonant two-photon transition near δ12 = 0 for many
velocity groups is enough to result in a large value of ρ̄33 near
resonance, which hides the AT splitting, as can be seen in
Fig. 4(c).

The absence of the AT splitting in the upper population
of a Doppler medium is due to the copropagating setup. This
means that an experimental fluorescence measurement could
not show the characteristic two peaks. This is a known fact:
the observation of the AT splitting depends on the relation
between the wave vectors and the intensities of the incident
beams, as pointed by Feneuille and Schweighofer [9]. In the
typical counterpropagating setup, one can observe the AT
splitting no matter which beam is sweeping, the strong or the
weak [23]. On the other hand, if the atoms are at rest, the
behavior is the same for co and counterpropagating beams.

As in the last subsection, we present the results for the
coherence σ14 in Fig. 5, using the same parameters of Fig. 4.
Again, we look not at the coherence but its squared modu-
lus. In comparison with ρ33, σ14 is even more dependent on
the velocities of the atoms, leading to an insignificant value
near v = 0, as Figs. 5(a) and 5(b) show. Thus, it follows
that once the Doppler integration is performed (in the order
we discussed previously), the doublet structure will prevail.
Then, the hole in the |σ̄14|2, the blue curve of Fig. 5(c), is

FIG. 6. Coherence |σ14|2 as a function of δ12 and δ23, for a
group of atoms with v = 0 in a weak field regime: �12 = �23 =
2π × 0.6 MHz. Logarithmic scale.

a consequence of the Stark shift together with a nonsatisfied
two-photon transition for low velocities.

Notice that, in this frequency-sweeping regime, the phase
between velocity groups is not as relevant to the distance
between the two peaks as in the last subsection. The dashed
line of Fig. 5(c), obtained first by taking the squared modulus
of the coherence and then integrating it, is slightly wider than
the blue curve. Nevertheless, the following results have the
same calculation procedure of the blue curves of Figs. 3(c)
and 5(c).

It is noteworthy that, while for copropagating beams, the
results for fluorescence and FWM are different whether it is
the strong or the weak beam that is scanning, for a configu-
ration of counterpropagating beams, the AT splitting can be
observed both in fluorescence and in FWM, no matter which
laser beam is sweeping [24].

It seems that different physical mechanisms play a role in
the presence of the doublet structure in the FWM signal (and
the lack of it in the fluorescence) once the Doppler integration
is performed for the two frequency-sweeping mechanisms.
We explore these mechanisms more deeply and highlight their
differences in the following section.

IV. FWM SIGNAL AFTER THE DOPPLER INTEGRATION

For a group of atoms with v = 0, there are infinite com-
binations of laser frequencies that satisfy the two-photon
resonance condition in the transition |1〉 → |3〉. These combi-
nations are given by the equation δ12 + δ23 = 0. However, as it
is possible to observe in Fig. 6, with |σ14|2 as a function of the
laser detunings δ12 and δ23, this coherence is dominated by the
two-photon transition when one-photon resonances are also
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FIG. 7. |σ̄14|2 as a function of δ12 and δ23 for (a) �12/2π =
0.6 MHz and (b) �12/2π = 12 MHz. (c,d) |σ̄14|2 for δ12 or δ23

constant, as indicated by the dashed curves in (b). The green curve in
(c) and the black curve in (d) are the same presented in Figs. 3(c) and
5(c), respectively.

present (δ12 = δ23 = 0). Notice that the color map of Fig. 6 is
on a logarithmic scale.

The integration over the Maxwell-Boltzmann distribution
of velocities introduces even more possibilities. In Fig. 7(a),
we present |σ̄14|2 for the same intensities of Fig. 6, but with the
integration with the Maxwell-Boltzmann distribution as dis-
cussed previously. The configuration δ12 = δ23 = 0 dominates
again, but for a copropagating beam’s configuration, |σ̄14|2 is
much higher when δ12 = δ23 in comparison with δ12 = −δ23.
There is always a group of atoms, with v ≈ δ23/k23, which
are simultaneously in one- and two-photon resonance when
the condition δ12 = δ23 is selected since k23 ≈ k12 for the
rubidium structure levels.

If one increases the Rabi frequency of the field in the lower
transition (|1〉 → |2〉) there is a significant impact in the FWM
due to the Stark shift, as Fig. 7(b) shows. We plot |σ̄14|2 as
a function of δ12 and δ23 when the lower transition is driven
by a strong field (�12/2π = 12 MHz) while the weaker field
(�23/2π = 0.6 MHz) stimulates the upper transition |2〉 →
|3〉. It is possible to observe that the single peak in Fig. 7(a)
splits into two peaks located over the line δ12 = −δ23. The
consequence is the presence of a doublet structure in the
typical configuration (weak beam varying its frequency with
the strong beam on resonance) and in the opposite situation
(strong beam scanning with the weak beam fixed on reso-
nance), as Figs. 7(c) and 7(d) demonstrate. Notice that, if
the fixed frequency laser is resonant with a different velocity
group of atoms, the signal becomes asymmetric.

It is important to remember the results of the previous
section. The AT splitting appears for each group of atoms in
both scanning configurations in the coherence |σ14(v)|2, but
the final FWM spectra can only be achieved after the proper

Doppler integration. Therefore, the splitting we observe in
the FWM is not merely due to the AC Stark effect but it
is also connected to the Doppler integration as the velocity
groups give different contributions to the final FWM output
[see Figs. 3(c) and 5(c)].

The fact that this particular combination of effects only
manifests itself as a double peak structure in the FWM is cu-
rious. We believe that it is connected to how the FWM scales
with the one- and two-photon coherences. If one considers a
perturbative analysis, as it is more intuitive, the fluorescence
(or absorption) scales linearly with the one- and two-photon
coherences (σ12, σ23, and σ13) while the FWM signal scales
with the square of these same coherences. Notice that this
behavior should maintain itself in our numerical solution with
all orders of interaction.

We must highlight, however, how this manifestation of the
AT effect is unusual. The typical interpretation of the sepa-
ration between peaks in the FWM signal as the actual energy
difference between split levels does not apply here. Our results
of the previous section show that each velocity group has its
energy split, even if this split behaves differently regarding
which field is scanning. The point we raise here is that, when
added together, the contributions of all atoms near resonance
are very small when compared to the contribution far from
resonance, forming the doublet-like structure of Fig. 7(b). The
frequency separation between the peaks is about one order of
magnitude greater than the Rabi frequency, while the actual
energy split for each group must be of the order of the Rabi
frequency.

The results of Figs. 8(a) and 8(b) explore more deeply
the relation between the FWM signal (|σ̄14|2) and the inten-
sity of the beam at the lower transition, �12, for the two
frequency-scanning setups. Notice that, in both cases, the
splitting increases linearly but with different angular coeffi-
cients. For the weak beam-sweeping scenario, the splitting is
≈1.9�12, very close to the Autler-Townes splitting for a single
group of atoms with v = 0 (2�12). On the other hand, if the
strong beam frequency varies, the splitting is much higher,
≈4.2�12. We can interpret this greater separation by looking
again at the results in Fig. 5(b) for this scanning configuration.
It is clear that the contribution to |σ̄14|2 from one of the AT
doublet peaks, which is closer to resonance, is negligible. So,
this greater separation corresponds to the distance between the
most distant peaks of the resonance due to two AT doublets of
different velocity groups. In the following section we discuss
that the experimental results could not show much difference
between the two frequency-scanning configurations. How-
ever, a small change in the model parameters can improve the
agreement.

Concerning the peak amplitude of the doublet, the behavior
is also different: it saturates when the weak beam is sweeping
its frequency, while it has a maximum and then decreases
when the strong beam is sweeping. There are distinct physical
mechanisms in play in these two frequency-scanning con-
figurations. In the typical experiment, with the weak beam
scanning, the strong field in the lower transition splits the
intermediate level into two due to the AC Stark effect. Then,
the weak beam in the upper transition probes these split levels.
Since we consider a closed system, there will always be atoms
that can satisfy the two-photon resonance and induce the
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FIG. 8. |σ̄14|2 as a function of �12 and (a) δ23 or (b) δ12.

FWM process. For the other frequency-scanning setup, the
weak beam has a fixed frequency, so eventually, the strong
beam will lead to a splitting so large that the two-photon res-
onance can no longer happen, therefore decreasing the signal.

V. COMPARISON WITH EXPERIMENTAL RESULTS

In the previous sections, we discussed the theoretical
model for several configurations. We focus now on the exper-
imental results of the FWM process that cover some of these
theoretical situations. Particularly, we use an experimental
setup with two laser beams of different lasers copropagating
through an Rb vapor at ≈80◦ C. The first beam comes from
a homemade cw diode laser at 780 nm, with stabilized tem-
perature and 30 mW of maximum output power. The diode
laser linewidth is about 1 MHz, much smaller than the hot
Rb Doppler linewidth (of hundreds of MHz). The laser has a
transverse mode TEM00 with a 0.7-mm beam waist (measured
with a CCD camera). This laser excites the 5S1/2, F = 3 →
5P3/2, F = 4 transition (|1〉 → |2〉) of 85Rb. The detuning
around this transition can reach a maximum of 10 GHz due
to the current control of the diode laser. The second beam
comes from a mode-locked Ti:sapphire laser (BR Labs Ltda)
with a repetition rate of fR ≈ 1 GHz, maximum output av-
erage power of 500 mW, and a 20-nm bandwidth centered

FIG. 9. CBL as a function of the optical mode detuning in the
|2〉 → |3〉 transition for diode laser powers from 61.3 μW up to
700 μW (estimate at the middle of the cell). Bottom axis: Detuning of
the optical mode nearest of resonance. Top axis: The correspondent
repetition rate variation from fR = 990.410 MHz.

near 776 nm. We tune one optical mode of the frequency
comb in the Doppler-broadened 5P3/2, F = 4 → 5D5/2, F =
5 transition (|2〉 → |3〉) [25,26] with fine control of fR, with
a 1-Hz resolution achieved through phase-locking at a signal
generator (E8663B-Agilent). Finally, the Ti:sapphire laser has
a beam waist of 0.6 mm at the Rb cell position.

The simultaneous presence of the diode and Ti:sapphire
laser beams together with quantum fluctuations are enough
to initiate the FWM process [27], leading to the generation
of new coherent beams at 5.23 μm (midinfrared) and 420 nm
(blue). We detect the CBL using blue filters, a pair of diffrac-
tion gratings, and a photomultiplier. As for the IR light at
5.23 μm, it is absorbed by the glass cell that contains the Rb.
To amplify the efficiency of the FWM process, we use a pair
of convergent lenses with focal distances of 20 cm to increase
the intensity of the two beams in the center of the Rb cell.
The beams enter the cell with parallel circular polarizations
[15]. Additional details regarding the experimental setup can
be seen in Ref. [28].

In Fig. 9, we show the intensity of the CBL as a function
of the Ti:sapphire optical mode detuning (δ23), for different
powers of the diode laser. These measurements were per-
formed with the Rb cell at a temperature of 74◦ C and with
the diode laser on resonance (δ12 = 0). We estimate that the
power of the diode laser at the center of the cell ranges from
P12 = 61.3 to 700 μW, while the power per optical mode of
the Ti:sapphire laser is P23 ≈ 15 μW. We estimate the power
of the beams in the focal region by measuring the input and
output power of the cell and applying the Beer-Lambert law.
The same percentage of absorption was used to infer the
power of the Ti:sapphire optical mode. We scan the mode fre-
quency by varying the repetition rate of the pulses, as shown
in the top axis of Fig. 9. The pair of doublets corresponds
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FIG. 10. Normalized CBL as a function of the diode laser de-
tuning for a fixed Ti:sapphire laser power and diode laser powers
ranging from P12 = 73.5 up to 515 μW (estimate at the middle of the
cell). The calibration of the diode laser detuning is obtained with a
saturated absorption spectroscopy (top curve).

to the FWM signal generated by two adjacent modes of the
frequency comb, with a frequency difference of ≈ 990.4 MHz.
We use this difference to calibrate the horizontal bottom axis
of the curve. As expected by our numerical results presented
in Fig. 8(a), the splitting of the doublet is linear with the
square root of the diode laser power.

The results for the second frequency scanning regime are
in Fig. 10. In this case, the strong field (diode laser) sweeps
its frequency while the weak field (one mode of the frequency
comb) is locked on a frequency near resonance. There is a no-
table asymmetry in the doublet, with two main factors behind
it: the diode laser absorption is different throughout the three
hyperfine transitions of the D2 line of Rb; the mode of the
Ti:sapphire laser is not precisely on resonance. This last factor
comes from the drifting offset laser frequency, as we can only
lock the repetition rate. The first factor could be improved
using large magnetic fields as proposed in Refs. [29,30]. The
asymmetry is in agreement with the theoretical results, as
Fig. 7(d) indicates that even a small detuning is enough to
change the symmetry of the FWM signal. As for the splitting
of the doublet, we verify again a linear dependence with the
square root of the diode laser power, in agreement with our
numerical results of Fig. 8(b).

The graphs of Fig. 11 confirms the theoretical results of
Fig. 7. Whenever the lasers have the same detuning, the reso-
nance condition is satisfied and, thus, there is a signal (δ12 −
δ23 = 0). Once again, this can only happen due to the inho-

FIG. 11. CBL as a function of the diode laser detuning for dif-
ferent repetition rates of the frequency comb. The diode laser power
is P12 = 112 μW and the Ti:sapphire mode power is P23 = 15 μW
(estimate at the middle of the cell).

mogeneously broadened nature of the atomic vapor, namely,
there is usually a velocity group that can interact with both
lasers. Moreover, if the laser in the lower transition is strong
enough (in this case, the diode laser), and its frequency is
varying, the AC Stark effect in combination with the Doppler
profile will result in a doublet structure. The symmetry of
this structure is strongly affected by the frequency position
of the fixed frequency laser, as Figs. 7(c) and 7(d) predicted
and Fig. 11 confirms.

We must emphasize that the asymmetry in the experimen-
tal spectra prevents, or at least makes it difficult, to achieve
a direct comparison between theory and experiment. As in
both frequency-sweeping scenarios, we could not lock the fre-
quency of the diode laser to a hyperfine transition of rubidium,
nor could we lock the offset frequency of our Ti:sapphire laser,
it is hard to predict which velocity group is resonant with the
fixed frequency laser. If one allows the detuning of the fixed
frequency laser to be a fitting parameter in the model, then a
direct comparison could be performed. Our goal, on the other
hand, is still achieved as our model provides insight into the
physical mechanism behind the doublet-like structure seen in
the experimental signal, even though it does not provide a
perfect fit. Notice that, from an experimental point of view,
since the medium is Doppler-broadened, it is easy to find a
frequency position for the fixed frequency laser, regardless of
which one, that generates the signal, but it will not necessar-
ily be resonant with the group with v = 0. This is why the
experimental spectra are predominantly asymmetrical.

In the previous section, we discussed the peak amplitude of
the FWM signal for the two frequency-scanning regimes. In
Fig. 12(a), we present the experimental results for this param-
eter as a function of the square root of the diode laser intensity.
As we can see, there is an amplitude decay for high-intensity
beams, for both frequency-scanning regimes. However, our
theoretical model [Fig. 12(b)] cannot predict the experimen-
tal behavior if the weak beam is scanning. We discussed in
Sec. IV that, for a closed system, there will always be atoms
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FIG. 12. Experimental and theoretical curves for amplitude and
splitting of the doublet as a function of square root intensity or
Rabi frequency of the strong field. Red circles and lines: weak beam
scanning (δ23); Green triangles and lines: strong beam scanning (δ12).
(a) and (d) are the experimental results. (b) and (e) are the theoretical
results for a closed system, while (c) and (f) are the same results for
an open system.

with the proper velocity to satisfy the two-photon condition.
This intensity saturation behavior of the FWM signal was
observed in a pure four-level system [31]. However, in the
experiment described here, there are three possible hyperfine
transitions to the diode laser to induce. In the weak beam
frequency-scanning regime, the diode laser is fixed on a cyclic
transition, and therefore, the system is closed. But, if the
diode laser is strong enough, it will pump atoms to the open
transitions, meaning that the system will no longer be closed
as the atoms fall into a different fundamental hyperfine level of
rubidium [32]. To add this possibility in the model in a simple
manner, we introduce a 1-MHz decay rate in the population
ρ22, allowing the loss of about 1/6 of the atoms when solving
the Bloch equations. This results in the peak amplitude as
a function of the strong beam Rabi frequency of Fig. 12(c).
This way, the model achieves a behavior compatible with the
experiment and reveals that the observed decay of the signal
in the two frequency scanning configurations has different
mechanisms behind it for each situation: optical pumping for
other hyperfine levels and far detuning from resonance.

Another feature we approached in the previous section was
the frequency separation between the peaks of the signal,
or the “splitting” of the doublet. The experimental splitting

seems to be the same for both frequency scanning setups, as
Fig. 12(d) shows. However, our theoretical model not only
predicts a difference between the splitting in the two scan-
ning regimes, but also gives lower values for the splitting, as
Fig. 12(e) shows. Once again, if we consider that the system is
open due to the high intensity of the strong field, these results
do improve, as Fig. 12(f) shows. A final consideration to this
is the error bar of the experimental frequency measurement.
Each scanning regime uses a different, and therefore, more
or less precise, calibration parameter. If the diode laser is
scanning, we use the saturation absorption curve while for
the Ti:sapphire scanning, the repetition of the signal, due to
two consecutive frequency modes, gives the time-frequency
conversion factor. So there can be a difference between the
experimental splittings but masked by a systematic error in
the time-frequency conversion.

VI. CONCLUSION

We analyzed the AT splitting pattern in a dressed cas-
cade three-level system. Our numerical calculation of the
Bloch equations allows us to compare the response of
the coherent blue light generated in the FWM process and
the blue fluorescence given by the upper-level population for
homogeneously (Sec. III) and nonhomogeneously (Sec. IV)
broadened medium. In the case of homogeneous broadening,
the response does not depend on whether the beams are co
or counterpropagating. The AT doublet is present in both
fluorescence and FWM signals if the weak beam frequency is
sweeping. However, this doublet pattern is indistinguishable
in the strong field frequency-scanning regime.

On the other hand, for a Doppler-broadening medium, we
need to account for the contribution of all velocity groups
within the Doppler profile, resulting in a different response
depending on whether the beams are copropagating or coun-
terpropagating and which beam is sweeping. In this context,
a more intriguing result is revealed when the beams travel
in the same direction: a doublet structure is observed in the
FWM signal for both scanning regimes but not in the fluores-
cence signal. Of note, we investigate the role of the physical
mechanism responsible for this doublet structure and how
it depends on which scanning regime is chosen. In a weak
field-scanning regime, the doublet structure is directly related
to the contribution of the AT effect due to all velocity groups.
On the other hand, in the strong field-scanning regime, the two
peaks correspond to the most distant peaks of the resonance
due to two AT doublets of different velocity groups.
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