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We present an analysis of coherent population trapping in a three-level Λ system when excited by an ultrashort
pulse train near the one- and two-photon resonances. Numerical results using Bloch equations give the transient
response of the system and clearly reveal a comb of electromagnetically induced transparency (EIT) lines.
An analytical solution to describe the EIT lines is derived in the steady-state regime and in the weak field limit.
Moreover, numerical results indicate that selective velocity spectroscopy makes possible the observation of the
comb of EIT lines in Doppler broadening media. © 2011 Optical Society of America

OCIS codes: 270.1670, 270.4180.

1. INTRODUCTION
The optical frequency comb [1] generated by mode-locked
femtosecond lasers has played an important role in various
fields such as optical frequency metrology [2] and quantum
coherent control [3]. Recently, new proposals in the field of
quantum information science have emerged [4] such as the
implementation of a quantum logic gate controlled through
the phase relationship between successive pulses [5]. Most
of the applications explore the perfect periodicity of the
frequency comb in addition to the fact that one can tune
the repetition rate of the mode-locked laser. In particular,
when the repetition rate, or its multiples, matches the splitting
between the two lower states in a Λ-type system, a coherent
population trapping (CPT) [6] is induced. In this context, a
very special case is the electromagnetically induced transpar-
ency (EIT) [7], i.e., the system is made transparent to a reso-
nant probe field.

EIT in the ultrashort pulse regime was theoretically pre-
dicted by Kocharovskaya and Khanin [8]; in fact, they showed
that, in the steady-state regime, a train of ultrashort pulses
may also induce CPT when interacting with a three-level Λ
system. More recently, an analytic iterative treatment was ap-
plied to study the transient behavior in a degenerateΛ system
[9]. The experimental observation of the EIT signal as a func-
tion of the repetition rate of an ultrashort pulse train produced
by a mode-locked diode laser was described by Sautenkov
et al. [10]. Moreover, the repetition rate spectroscopy was
explored by Arissian and Diels [11] using a picosecond
mode-locked laser.

In this article, we present an analytical solution for the
coherence induced by a long train of ultrashort optical pulses
in a three-level lambda system, near the conditions of one- and
two-photon resonances. The solution is obtained in the fre-
quency domain, and it is valid for the stationary regime and
in the weak field limit. Two assumptions are important.
One is related to the fact that a mode-locked laser generates
an infinite train of very regular ultrashort pulses that, in the
frequency domain, gives a comb of narrow lines that can
be written as delta functions. The other is related to the

atomic system, for which all the atomic relaxation times
are considered longer than the laser repetition period. In this
case, the atom interacts not only with the spectrum of a single
pulse but with the frequency comb of the pulse train; in fact,
the effect is similar to that of an atom interacting with an
infinite number of cw lasers whose frequency separation is
equal to the repetition rate and having zero relative phases.
This behavior can be understood using a physical picture,
analogous to the Ramsey fringes, where constructive and
destructive interferences, due to the time-delayed phases
acquired with the succession of the pulses, occur during
the atomic relaxation times. This description allows us to
make comparisons with EIT results obtained using cw lasers.

Before discussing the stationary regime, we analyze the
temporal evolution of the atomic population and coherence
as a function of the laser field intensity, and the number of
driving pulses in the excitation train. The interaction of each
pulse with the atomic system is described by the optical Bloch
equations, and the response of the medium, obtained by a
direct numerical integration, is compared with our analytical
results.

Our treatment for the problem is based on the scheme of
Fig. 1(a). We consider a three-level atom in a Λ configuration
interacting with a train of ultrashort pulses generated by a
mode-locked laser. Following [12] and taking into account
the pulse-to-pulse phase shift, Δϕ − ωcTR, the total electric
field for the pulse train can be written as

EðtÞ ¼
XN−1

n¼0

Eðt − nTRÞeiðωct−nωcTRþnΔϕÞ; ð1Þ

where EðtÞ is the envelope function, ωc is the angular
frequency of the carrier, and TR is the time between pulses.

The Hamiltonian of the system is given by Ĥ ¼ Ĥ0 þ Ĥ int,
where Ĥ0 ¼ ℏω12j2ih2j þ ℏω13j3ih3j is the Hamiltonian of the
free atom, with ωij ¼ ωj − ωi, and the coupling between the
atom and the electric field reads

Ĥ int ¼ −μ13EðtÞj1ih3j − μ23EðtÞj2ih3j þ h:c: ð2Þ
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The Bloch equations describing the temporal evolution of
the elements ρkl of the atomic density matrix are given by

_ρ33 ¼ ½iΩ31ðtÞρ13 þ c:c:� þ ½iΩ32ðtÞρ23 þ c:c:� − 2γρ33; ð3Þ

_ρ22 ¼ ½iΩ23ðtÞρ32 þ c:c:� þ γρ33; ð4Þ

_ρ11 ¼ ½iΩ13ðtÞρ31 þ c:c:� þ γρ33; ð5Þ

_ρ23 ¼ ðiω23 − γÞρ23 þ iΩ23ðtÞðρ33 − ρ22Þ − iΩ13ðtÞρ21; ð6Þ

_ρ13 ¼ ðiω13 − γÞρ13 þ iΩ13ðtÞðρ33 − ρ11Þ − iΩ23ðtÞρ12; ð7Þ

_ρ12 ¼ ðiω12 − γ12Þρ12 − iΩ32ðtÞρ13 þ iΩ13ðtÞρ32; ð8Þ

where γ12 is the relaxation rate of the coherence ρ12, and
ΩklðtÞ ¼ μklEðtÞ=ℏ is the time-dependent Rabi frequency for
the transition with electric dipole moment μkl. We consider
that the transition j1i → j2i between the two lower states is
dipole-forbidden and that the spontaneous decay rate of the
excited state j3i, 2γ, is smaller than the pulse repetition rate,
f R ¼ 1=TR. In this case, the atom could never completely relax
between two consecutive pulses, leading to accumulation in
both population and coherence [13]. In the frequency domain,
this means that the atomic system can distinguish between
two neighboring modes of the frequency comb.

Three resonance situations are investigated, and the condi-
tions at which the atomic system reaches a stationary state,
for each case, are obtained by numerical integration of the
Bloch equations using a standard fourth-order Runge–
Kutta method. Optical pumping occurs when a mode of the
frequency comb matches only one-photon transition [14]:
νi3 ¼ mfR þ ðΔϕ=2πÞf R, for i ¼ 1 or 2 and m integer. In this

case, no net population is obtained at the excited state, and
the coherence between the two lower levels, ρ12, evolves to
zero. The Raman resonance is characterized by a pure two-
photon transition, and it is achieved whenever the pulse
repetition rate or its multiples coincides with the frequency
difference between the two lower states [15], ν12 ¼ qf R, with
q integer. However, the more interesting situation takes place
when both one- and two-photon resonances occur simulta-
neously, which corresponds to the EIT condition. In this case,
the stationary regime of maximum coherence is achieved for a
number of driving pulses much smaller than that needed for
maximum coherence in Raman resonance.

2. NUMERICAL RESULTS
Temporal evolution of the populations, ρ11, ρ22, and ρ33, during
the interaction with a train of pulses, when both one- and
two-photon resonances occur simultaneously, is shown in
Fig. 1(b). The results are similar to those obtained for a degen-
erate Λ system using an analytic iterative solution [9]. To sim-
plify the numerical computation, we modeled the pulses as
having square envelopes with a time duration of Tp ¼ 100 fs,
and Δϕ ¼ 0. We have also considered μ13 ¼ μ23 ¼ μ and
defined an average Rabi frequency,

�Ωo ¼ Ωo
Tp

TR
; ð9Þ

where Ωo is the magnitude of the Rabi frequency for the square
pulse. In these resonance conditions the coherence between
the two lower states, ρ12, is showed in Fig. 1(c), for three va-
lues of �Ωo. These results are obtained for γ12 ¼ 0, ν12 ¼ 70f R,
ν13 ¼ 4 × 106f R, and f R ¼ ð50=2πÞγ. Whereas for weak fields
full coherence is reached only after the interaction with more
than 50,000 pulses, for �Ωo of the order of γ, full coherence is
obtained before 100 driving pulses, and Rabi oscillations (due
to coherent accumulation) are observed in both coherence
and population [9].

In the stationary regime, the atomic response to the excita-
tion by a train of femtosecond pulses can be studied as a func-
tion of the pulse repetition rate. Figure 2 shows (a) the excited-
state population, ρ33, and (b) the coherence, jρ12j, as a function
of δf R, i.e., the variation of f R around the condition ν12 ¼ 70f R.
The results were obtained for the same parameters of Fig. 1,
with ðωc=2πÞ ¼ ν13, ðγ=2πÞ ¼ 2MHz, and �Ωo ¼ 2γ, after the
interaction of the atomic system with more than 500 driving
pulses. The maximum values of the excited-state population,
ðρ33ÞM , are modulated by the Raman resonances of the med-
ium. As shown in Fig. 2(a), an increase of ðρ33ÞM is always ob-
served as f R approaches the two-photon resonance. However,
exactly at the two-photon resonance, ðρ33ÞM goes to zero
[Fig. 2(c)] and the envelope of the coherence jρ12j reaches
its maximum value [Fig. 2(b)]. The dip in the Raman resonance
and the maximum value of the jρ12j envelope are signatures of
the EIT window. The experimental observation of these EIT
windows, using ultrashort pulses, was reported in [10,11]. In
Figs. 2(d) and 2(e) we have a zoom of the two regions inside
the Raman resonance. We can clearly see the peaks in ρ33
due to the one-photon resonance condition, νi3 ¼ mfR. The
frequency difference between two successive one-photon re-
sonance peaks is given by f R=m, while the frequency separa-
tion between successive EIT windows is determined by f R=q.
We note that, by changing f R,m and qmust adjust accordingly,

Fig. 1. (Color online) (a) Schematic representation of the three-level
Λ system, where ωm and ωm0 are two distinct modes of the frequency
comb. Temporal evolution of the (b) populations ðρ11; ρ22; ρ33Þ and
(c) coherence between the two lower states (jρ12j), during the inter-
action with a train of pulses, obtained by direct numerical integration
of Eqs. (3)–(8).
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so the frequency separations are not equidistant. Moreover,
since m is of the order of 4 × 106 [Figs. 2(d) and 2(e)] and q
assume the values 69, 70, and 71 [Figs. 2(a) and 2(b)], we have
that f R=m ∼O ðHzÞ and f R=q ∼O ðMHzÞ. Near δf R ¼ 0, i.e.,
when both one- and two-photon resonances are present, a
comb of EIT lines is observed, characterized by very narrow
dips in ρ33, as shown in Fig. 2(d).

3. ANALYTICAL APPROACH
The strong dependence on the modes of the frequency comb
of the atomic population and coherence, as indicated in Fig. 2,
can be better understood if, instead of working in the time
domain, we look at the frequency domain [16]. We are inter-
ested in the atomic response near the two-photon resonance
and after a long time interaction with the pulse train as the
system reaches the steady-state regime. In the weak pulse lim-
it, we can neglect the variations in the populations and then
write ρ33 ¼ 0, ρ11 ¼ ρf11, and ρ22 ¼ ρf22, where ρf11 and ρf22 are
the steady-state population values at the one- and two-photon
resonances. These two populations depend on the ratio
between the electric dipole momenta, μ13 and μ23, and they
are independent of the initial conditions [17].

We began our treatment in the frequency domain by taking
the Fourier transform (FT) of the pulse train [12]:

~EðωÞ ¼ 2π~Eðω − ωcÞ
TR

X∞
m¼−∞

δðω − ωmÞ: ð10Þ

From Eq. (10) we clearly see that the frequency spectrum
consists of a comb of very narrow lines with frequencies ωm ¼
ð2πmþΔϕÞf R and zero relative phase.

Using the above-mentioned values for the populations and
taking the FT of each term of Eqs. (6)–(8), we can write the
atomic coherence, in the frequency domain, as

~ρ12ðωÞ ¼
1

ðω12 − ωÞ þ iγ12
× ½~Ω32ðωÞ

⊗ ~ρ13ðωÞ − ~Ω13ðωÞ ⊗ ~ρ32ðωÞ�;
ð11Þ

~ρ13ðωÞ ¼
1

ðω13 − ωÞ þ iγ × ½ρf11~Ω13ðωÞ þ ~Ω23ðωÞ ⊗ ~ρ12ðωÞ�;

ð12Þ

~ρ23ðωÞ ¼
1

ðω23 − ωÞ þ iγ × ½ρf22~Ω23ðωÞ þ ~Ω13ðωÞ ⊗ ~ρ21ðωÞ�;

ð13Þ
where

~ρijðωÞ ¼
Z

∞

−∞

ρijðtÞe−iωtdt;

~ΩijðωÞ ¼ 2π�Ωij

X
m

δðω − ωmÞ;

and ~ΩijðωÞ ⊗ ~ρklðωÞ is the convolution between the two func-
tions. We have also considered that all modes of the comb,
near the one- and two-photon transitions, have the same
amplitude. This allows us to write an average Rabi frequency
for each transition i → j:

�Ωij ¼
μij ~Eðωm − ωcÞ

ℏTR
;

where the amplitude of each mode ~Eðωm − ωcÞ is equal to the
electric field amplitude of the square pulse times the pulse
duration Tp; in fact, we can show, for μ13 ¼ μ23 ¼ μ,
that �Ωij ¼ �Ω0 ¼ Ω0Tp=TR.

Fig. 2. (Color online) (a) Excited-state population ρ33 and (b) coherence jρ12j as a function of δf R, for f R ¼ 100MHz, ðγ=2πÞ ¼ 2MHz, ν12 ¼ qf R,
with q ¼ ð69; 70; 71Þ and �Ωo ¼ 2γ, obtained by direct numerical integration of Eqs. (3)–(8). (c) Zoom of the region inside the circle in (a). (d),
(e) Zooms of the regions inside the two circles in (c) around δf R ¼ 0 and δf R ¼ 20kHz, respectively.
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Using Eq. (10) and the convolution theorem, we can write

~ΩijðωÞ ⊗ ~ρklðωÞ ¼ �Ωij

X
m

~ρklðω − ωmÞ: ð14Þ

In the weak field limit, we can neglect the processes invol-
ving resonances of four or more photons and then obtain an
analytical expression for the coherence between the two
lower states, which, in the time domain, is written as (see
Appendix A)

ρ12ðtÞ¼
P
m;m0

�Ω13
�Ω32

ðω12−ωm0 þωmÞþiγ12

�
ρf11

ðω13−ωm0 Þþiγ−
ρf22

ðω23þωmÞ−iγ

�
exp½iðωm0 −ωmÞt�

1−
P
m;m0

1
ðω12−ωm0 þωmÞþiγ12

�
j�Ω23 j2

ðω13−ωm0 Þþiγ−
j�Ω13j2

ðω23þωmÞ−iγ

� :

ð15Þ

The denominator ðω12 − ωm0 þ ωmÞ þ iγ12 in Eq. (15) indicates
that we select only processes involving two modes of fre-
quency comb. When the frequency difference of these two
modes, ωm − ωm0 , is equal to the splitting between the two low-
er states, ω12, the atomic system is pumped into a super-
position of the two states, and thereby the increase of the
coherence ρ12 characterizes the EIT condition. In this situa-
tion, we also have the contribution of one-photon resonance
from each mode, as indicated by the denominators ðω13 −

ωm0 Þ þ iγ and ðω23 þ ωmÞ − iγ. This can be clearly seen in
Fig. 3, where jρ12j is plotted as a function of the pulse repeti-
tion rate. The envelope of the maximum values of the coher-
ence, jρ12jmax, determines the EIT window, and each peak
corresponds to a one-photon resonant transition. What we
see is the EIT window with a comb of very narrow EIT lines.
The results shown in Fig. 3 were obtained for ρf11 ¼ ρf22 ¼ 1=2,
with the two Rabi frequencies equal to �Ωo ¼ γ=50, and all the
other parameters are equal to those of Fig. 1. In these condi-
tions the system reaches a state of full coherence.

We can also use Eq. (15) to obtain the linewidth of the EIT
window that modulates the comb of EIT lines. For this, we
keep each branch of the Λ transition on resonance and study
the variation of jρ12j over the two-photon resonance (see
Appendix B). In the simplest case of equal Rabi frequencies,
we find that the EIT window linewidth,Δðδf RÞ, can be written
as

Δðδf RÞ ¼
ffiffiffi
3

p

qπ

�
γ12 þ

2�Ω2
o

γ

�
; ð16Þ

where q is the number of modes between the two lower states.
Equation (16) gives the same behavior as obtained in the case
of CPT with cw lasers [18]. The first term is due to the relaxa-
tion rate of the coherence ρ12, whereas the second term,
proportional to the field intensity, describes the power broad-
ening. The factor

ffiffiffi
3

p
appears because here the modes are

scanning over the two legs of the Λ system.
In Figs. 4(a)–4(c) we plot jρ12jmax as a function of δf R in

order to compare the linewidth of the EIT window obtained
from our analytical approach, Eq. (15), with the numerical
results calculated from the Bloch equations, Eqs. (3)–(8),
for three different values of the average Rabi frequency.
For very low field intensity, where the analytical expression
is valid, the two curves overlap. For �Ωo ¼ γ=5 the linewidths

are almost the same, although differences in the wings of the
curve are noted. For �Ωo ¼ γ the analytical approach is not
longer valid, and thus the numerical results show a narrower
window due to saturation effects.

We also remark that the EIT window, as described by
jρ12jmax in Fig. 4, was observed with an ultrashort pulse train
produced by a mode-locked diode laser [10] and with a pico-
second laser [11]. In the latter experiment, the fluorescence
of the excited state was detected, and a decrease of the ρ33
population was observed, corresponding to the dip in the
Raman resonance as shown in Fig. 2(c).

4. INHOMOGENEOUS BROADENING
As we see in Fig. 3, the excitation of aΛ-type system by a train
of ultrashort pulses reveals a series of very narrow EIT lines
inside the EIT window. As described before, each narrow EIT
line occurs when the system is simultaneously in one- and
two-photon resonances [Fig. 2(d)]. However, when we ana-
lyze a Doppler broadening atomic sample, for each value of
δf R we need to integrate out the atomic response over the
Doppler profile, so the one-photon resonances are blurred
and only the dip in the Raman resonance (the EIT window)
is observed [19]. To distinguish the one-photon resonances
in a Doppler broadening vapor, we can fix the pulse repetition
rate and use the velocity selective spectroscopy to probe the
atomic response.

In Fig. 5 we show the variation of the lower state popula-
tion, Δρ11 ¼ ρ11 − ρðoÞ11 , in the Doppler profile, for a medium

Fig. 3. (Color online) jρ12j given by Eq. (15) as a function of δf R.

Fig. 4. (Color online) (a)–(c) Comparison between the envelopes
of the maximum values of the coherence, jρ12jmax, obtained from
Eq. (15) (solid curves) and those obtained by numerical integration
of Eqs. (3)–(8) (dashed curves) for three values of �Ωo.
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with a Doppler width equal to ωD ¼ 250γ and initial conditions
ρðoÞ11 ¼ ρðoÞ22 ¼ 1=2. The numerical results were obtained from
Eqs. (3)–(8), using an average Rabi frequency equal to �Ωo ¼
γ=5, for both transitions and after the interaction of the atomic
system with 1000 driving pulses. To account for the velocity
distribution, we replace the transition frequencies ω13 and ω23

in Eqs. (6)–(8) by ω13 − δ and ω23 − δ, where δ ¼ ~k · ~v labels the
different atomic velocity groups, and ~k and ~v are the laser
wave vector and the atomic velocity, respectively. The other
parameters are equal to those of Fig. 2. In Fig. 5(a), f R ¼
100MHz, corresponding to the situation where all the atoms
are at the two-photon resonance (ν12 ¼ 70f R), but only groups
of atoms with specific velocities will also be at the one-photon
resonance and thereby manifest the EIT effect. It is interesting
to note that the result shown in Fig. 5(a) also reflects the fact
that in the copropagating geometry the two-photon transition
is Doppler-free, which is not the case for the one-photon
transition.

Last, when we change the pulse repetition rate for a value
distinct from a harmonic of ν12, as shown in Fig. 5(b), we ob-
serve only the peaks corresponding to the population transfer
processes due to the one-photon resonances in each leg of the
lambda system for different groups of atoms. The situation de-
scribed in Fig. 5(b) has been investigated in detail, as a func-
tion of the atomic density and laser intensities for the lines D1
and D2 of Rb alkaline metal [20,21]. Moreover, the results
shown in Fig. 5(a) indicate that the selective velocity spectro-
scopy can be used to observe the comb of the EIT lines in the
Doppler profile of an inhomogeneously broadened medium.

For a realistic atomic system, we need to consider the
hyperfine excited states. In this case, using a laser at the
standard 100MHz repetition rate, which is more feasible to

perform our numerical approach, the EIT lines shown in
Fig. 5(a) may be blurred. However, the EIT lines for each
hyperfine level can be separated if a laser with higher
repetition rate, such as 1GHz, is used [22].

5. CONCLUSIONS
In this paper we have presented a study of the CPT in a three-
level Λ system excited by an ultrashort pulse train near the
one- and two-photon resonances. The temporal evolution of
the atomic system and the response to a repetition rate spec-
troscopy were obtained from the numerical integration of the
Bloch equations. The results showed the occurrence of a
comb of very narrow EIT lines, determined by the one-photon
resonances, that appears inside the EIT windows. While the
frequency difference between two successive EIT lines is
given by f R=m, where m is determined by νi3 ¼ mfR, the fre-
quency separation between successive EIT windows is deter-
mined by f R=q, where q is related to the number of modes
between the two lower states. We also worked in the fre-
quency domain to explore a more intuitive physical picture.
In this context, we derived a closed analytical solution to
describe these EIT signals, which is valid in the weak field
regime. In particular, we showed that the linewidth of the
EIT window can be modeled by two cw lasers with equal in-
tensities. Further, a comparison of the analytical results with
those obtained by a direct numerical integration of the Bloch
equations was also present. Finally, the numerical results
indicate that selective velocity spectroscopy appears as very
useful tool to observe the comb of EIT lines in Doppler broad-
ening media.

APPENDIX A: DERIVATION OF EQ. (15)
Using Eq. (14) to write the convolutions ~ΩijðωÞ ⊗ ~ρklðωÞ in
Eqs. (11)–(13), we obtain

~ρ12ðωÞ ¼
1

ðω12 − ωÞ þ iγ12

×
�X

m

�Ω32~ρ13ðωþ ωmÞ −
X
m

�Ω13~ρ32ðω − ωmÞ
�
; ðA1Þ

~ρ13ðωÞ ¼
1

ðω13 − ωÞ þ iγ

×

�
2πρf11�Ω13

X
m0

δðω − ωm0 Þ þ
X
m0

�Ω23~ρ12ðω − ωm0 Þ
�
;

ðA2Þ

~ρ23ðωÞ ¼
1

ðω23 − ωÞ þ iγ

×

�
2πρf22�Ω23

X
m0

δðω − ωm0 Þ þ
X
m0

�Ω13~ρ21ðω − ωm0 Þ
�
:

ðA3Þ

As we are interested in the coherence between the two
lower states, we use Eqs. (A2) and (A3) to obtain ~ρ13ðωþ
ωmÞ and ~ρ32ðω − ωmÞ and thus insert them into Eq. (A1).
We find

Fig. 5. (Color online) Variation of the lower state population, Δρ11,
as a function of the atomic velocity groups (δ=2π), for a medium
with Doppler width equal to ωD ¼ 250γ, �Ωo ¼ γ=5, and (a) ν12 ¼ 70f R
(two-photon resonance) and (b) ν12 ¼ 70:3f R.
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~ρ12ðωÞ ¼
1

ðω12 − ωÞ þ iγ12

×
X
m;m0

�
2π�Ω13

�Ω23

� ρf11
ðω13 − ω − ωmÞ þ iγ

−
ρf22

ðω23 − ωþ ωm0 Þ − iγ

�
δðωþ ωm − ωm0 Þ

þ
� j�Ω23j2
ðω13 − ω − ωmÞ þ iγ −

j�Ω13j2
ðω23 − ωþ ωm0 Þ − iγ

�

× ~ρ12ðωþ ωm − ωm0 Þ
�
:

ðA4Þ

Equation (A4) allows an iterative solution for ~ρ12ðωÞ. A
closed solution is obtained in the weak field limit, when only
two-photon resonances are considered. In this case, we can
take ~ρ12ðωþ ωm − ωm0 Þ ≈ ~ρ12ðωÞ and thus obtain

~ρ12ðωÞ ¼
2π�Ω13

�Ω32
ðω12−ωÞþiγ12

P
m;m0

�
ρf11

ðω13−ω−ωmÞþiγ −
ρf22

ðω23−ωþωm0 Þ−iγ

�
δðωþ ωm − ωm0 Þ

1 − 1
ðω12−ωÞþiγ12

P
m;m0

�
j�Ω23j2

ðω13−ω−ωmÞþiγ −
j�Ω13 j2

ðω23−ωþωm0 Þ−iγ

� :

ðA5Þ
So the coherence between the two lower states, in the station-
ary regime, is given by the FT of Eq. (A5) and is displayed
in Eq. (15).

APPENDIX B: DERIVATION OF EQ. (16)
In order to derive the linewidth of the EIT window, we con-
sider only the two modes (m and m0) of the comb frequency
that are near the Raman resonance. In this case, we can set
δf R ¼ ν12=ðm −m0Þ. By assuming one-photon resonances
ω13 ¼ ωm0 and ω23 ¼ ωm, we can write Eq. (15) as

ρ12ðtÞ ¼
1
2

�
− expðiω12tÞ

1 − ðiγÞ½iγ12−2πðm0−mÞδf R�
2j�Ωoj2

�
; ðB1Þ

where, to simplify, we took �Ω13 ¼ �Ω23 ¼ �Ωo and
ρf11 ¼ ρf22 ¼ 1=2.

The maximum value for the coherence ρ12 is achieved at the
two-photon resonance, i.e., δf R ¼ 0:

jρ12jðδf R¼0Þ ¼
1
2

�
1

1þ γγ12
2j�Ωo j2

�
: ðB2Þ

The linewidth Δðδf RÞ is determined by the values of δf R at
jρ12j ¼ 1

2 jρ12jðδf R¼0Þ and is given by Eq. (16).
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